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The non-equilibrium phase behavior of a colloidal hard-sphere fluid under oscillatory shear was

investigated in real-space with experiments on poly(methyl methacrylate) (PMMA) colloidal

suspensions and Brownian Dynamics computer simulations. All the samples in both experiments and

the simulation are below the coexistence density of hard-sphere freezing, so the shear-induced crystals

are out-of-equilibrium and melt after cessation of the shear. The physics is therefore fundamentally

different from shear-induced crystallization in jammed or glassy systems. Although the computer

simulations neglect hydrodynamic interactions and impose a linear flow, the results are in good

agreement with the experiments. Depending on the amplitude and frequency of the oscillation, four

regimes with different structures, hereafter referred to as phases, were identified: an oscillating twinned

face-centered-cubic (fcc) phase, a sliding layer phase, a string phase and a phase that has not been

reported previously in experiments, which we identify as tilted layers. This phase consists of lanes of

particles that order in a hexagonal-like array (in the gradient-vorticity plane) which has lines of

particles under an angle with the horizontal. Phases similar to the sliding layers, string phase and tilted

layer phase were reported in Brownian and Molecular Dynamics simulations (systematically called

string formation) but the validity of these simulations has been questioned. We demonstrate the

experimental existence of these string-like phases and elucidate their structural differences in real-space.
Introduction

It is well known that shear has a large effect on colloidal self-

assembly 1. A remarkable example is that a hard-sphere fluid can

crystallize as the result of oscillatory shear and that the shear-

induced crystal melts back upon cessation of the shear 2,3. These

shear induced crystals are out-of-equilibrium and therefore

the physics is fundamentally different from shear-induced

crystallization in jammed or glassy systems 4,5. Shear-induced

crystallization is the result of flow-induced rearrangements in the

micro-structure of the fluid, caused by an interplay between

hydrodynamics interactions, Brownian motion and inter-particle

forces. Understanding such complex flow behavior is industrially

important and the possibility to switch between different states

by means of an external field is promising for many applications

(e.g. in the case of electronic ink when the switching is between

a state displaying color by interference effects and one with less

order and no color).

When subjected to steady shear, hard-sphere suspensions

that are fluid in equilibrium do not display pronounced
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three-dimensional (3D) ordering for shear rates ranging from

10�3–102 s�1. However, when oscillatory shear is applied to these

samples, shear-induced ordering is observed such as layering,6

string formation7 and 3D crystal-like ordering.3 The principal

parameter governing the crystal-like ordering is the strain

amplitude, which determines the distance of flow-induced inter-

actions between the particles. For small strains, particles form

hexagonal layers in the vorticity–velocity plane with one of the

close-packed lines of particles perpendicular to the velocity

direction. These layers slide from an ABC stacking at one

extreme of the oscillation to an ACB stacking at the other,

resulting in an oscillating twinned face-centered-cubic (fcc)

crystal. For intermediate shear strain, the particles form hexag-

onal layers in the same plane as before, but now with one of the

close-packed lines parallel to the velocity direction, and slide

through the grooves of layers above and below. The oscillating

twinned fcc phase and the sliding layer phase were observed with

light scattering experiments on sheared hard-sphere suspensions3

and on charged particles.8,9 The same structural rearrangements

were observed in real-space with suspensions that are above the

bulk fluid coexistence density of hard spheres with optical and

confocal microscopy10–13 and with light scattering experi-

ments.3,14 Derks et al. showed for concentrated suspensions

under steady shear that the close-packed lines of particles of the

hexagonal layers align with the velocity direction and that the

hexagonal layers slide over each other in a zig zag path, travelling

from one triangular void of a neighboring layer to the other.15
Soft Matter, 2012, 8, 6931–6939 | 6931
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Non-equilibrium molecular dynamics (NEMD) simulations on

oscillatory shear demonstrated the twinned fcc and sliding layer

phases in samples that are fluid in equilibrium.16,17

For large strain amplitudes the hexagonal layers break up,

resulting in strings of particles along the velocity direction,

known as string formation. Weak string formation was observed

in both steady and oscillatory shear experiments.3,9 Early NEMD

simulations on hard-sphere fluids under steady shear showed

that at very high shear rates particles form strings in the direction

of the flow and that these strings arrange in a regular hexagonal

pattern in the gradient–vorticity plane.18 More recent studies

have argued that this string phase is an artifact arising from the

assumed linear velocity profile and that a shear thickening regime

without strings is observed instead,19,20 consistent with experi-

ments on PMMA colloids under steady shear.21 However, non-

equilibrium Brownian dynamics (NEBD) simulations on oscil-

latory shear revealed similar string-like ordering,22 and the

scattering diagram calculated from the string phase observed in

the simulations strongly resembles the experimental light scat-

tering results.23 NEMD simulations that do not make any

assumption about the velocity profile revealed oscillatory shear-

induced ordering in a Lennard–Jones fluid but do not report on

ordering in all three dimensions.16Of course, we are well aware of

the fact that contrary to equilibrium behavior, the behavior of

‘simple’ and colloidal liquids under shear may be quite different.

We present a detailed, real-space study of oscillatory shear-

induced order in hard-sphere colloidal fluids using both experi-

ments on PMMA colloidal suspensions and NEBD simulations

with an imposed linear velocity profile and no interparticle

hydrodynamic interactions. The structure of an oscillating fcc

and sliding layer phase, a string phase and a novel shear-induced

phase not mentioned in the light scattering literature is presented

together with its dependence on the strain amplitude and

oscillation frequency.
Fig. 1 The equilibrium phase behavior as a function of dry weight

fraction PMMA in CHB/cis-decalin, 22 h after dispersing the particles.

An average scaling factor p ¼ 1.23 � 0.01 maps the system onto the

hard-sphere phase diagram.
Experimental methods and computer simulation

Particle characterization, shear cell setup, data acquisition

The particles used in this study were poly(methyl methacrylate)

(PMMA) spheres with a diameter s ¼ 2.07 mm and a poly-

dispersity of 3%, determined with static light scattering (SLS).

They were sterically stabilized with poly(12-hydroxystearic acid)

(PHS) gafted onto a PMMA backbone which was chemically

attached to the core of the particles and covalently labeled with

fluorescent rhodamine isothiocyanate (RITC) dye for imaging.24

Particles were dispersed in a 26 wt% mixture of cis-decahy-

dronaphtalene (cis-decalin) in cyclohexyl bromide (CHB)

saturated with the salt tetrabutylammonium bromide (TBAB).

This mixture nearly matches the density of the particles

(r ¼ 1.19 g ml�1) and also closely matches the index of refraction

(n25D ¼ 1.492). The viscosity of the solvent mixture was 2.2 mPa

s.25 The high salt concentration screens the charges on the

particles, making them behave approximately as hard spheres.26

The equilibrium phase behavior of the suspension was deter-

mined by filling five capillaries with different weight fractions of

the sterically stabilized PMMA particles (0.388, 0.408, 0.419,

0.427 and 0.438). Because the particles were nearly density

matched, these weighted values are approximately equal to the
6932 | Soft Matter, 2012, 8, 6931–6939
dry PMMA volume fraction fc. The capillaries were stored

horizontally in a temperature controlled room at 21 � 1 �C and

after 22 h the particle positions were determined over the

complete height of the capillary with confocal microscopy. The

fraction of particles that are part of a crystal was determined by

bond order parameter analysis (described later in this section)

and plotted in Fig. 1. Since the particles were closely density

matched, sedimentation did not have a significant effect during

the 22 h. With linear regression, an average scaling factor p ¼
1.23 � 0.01 was determined that maps the values in Fig. 1 onto

the hard-sphere phase diagram,27 resulting in a freezing point fc

¼ 0.40 � 0.01 and melting point fc ¼ 0.44 � 0.01. The effective

particle diameter was on average 1.231/3 ¼ 1.07 times larger than

determined with SLS. This is because the particles absorb some

of the CHB, causing them to swell, combined with leftover

charge effects.26 The effective diameter was also measured by

determining the distance of nearest approach from the first peak

in the pair correlation function g(r) of a crystalline domain in

the coexistence region. Using the hard-sphere melting point

(f ¼ 0.54) as reference, this resulted in an effective particle

diameter of 1.05s, which is slightly smaller than that obtained

with the previous method.

A parallel plate shear cell mounted on top of an inverted

confocal microscope was used to investigate the real-space

behavior of particles under shear.28 Fig. 2 shows a schematic of

the shear cell and our choice of the coordinate system. The top

and bottom plate are microscopy glass slides attached to trans-

lational cassettes that can be displaced with piezostepper motors.

Alignment of the glass slides was performed using confocal

microscopy in reflection mode using an HeNe 543 nm laser and

an air objective (20x 0.7 NA, Leica). The slides varied by �1 mm

in the z-direction over the full travel of 1 cm (0.01%) based on

extensive testing of the setup.28 The typical spacing between the

slides was 100 mm and an amount of �60 mL of suspension was

placed between the slides to fill the cell. A metal vapor lock was

used to prevent evaporation of the suspending liquid. The

amplitude A, velocity vmax and gap width h (typically 100 mm)

determine the maximum strain amplitude gmax ¼ 2A/h and the

maximum shear rate _gmax ¼ 2vmax/h.
29 The time dependent shear

rate and strain amplitude are given by

g(t) ¼ gmaxsin(2pft) (1)
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Shear cell schematic and coordinate system definition. The

amplitude A, maximum velocity vmax and height h is set during the

experiment. The red dotted line indicates the plane of zero velocity.
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_g(t) ¼ _gmaxcos(2pft), (2)

with f the frequency of oscillation and _gmax¼ 2pfgmax. We define

the Peclet number Pe as

Pe ¼ _gmax h a3

kBT
; (3)

with a¼ s/2 the particle radius and h the viscosity of the medium.

Digital images of the colloidal dispersion were obtained with

a confocal scanning laser microscope (Leica TCS SP2) and an oil

immersion objective (100x 1.4 NA, Leica). The RITC labeled

particles were excited with an HeNe 543 nm laser and a piezo

focusing drive (Physik Instrumente) was used for scanning in the

vertical direction. Measurements were performed in a tempera-

ture controlled room at 21 � 1 �C. The coordinates of the

particles were obtained using an algorithm similar to the method

described by Crocker and Grier,30 but extended to 3D as e.g.

schematically described in ref. [31].
Simulation method

Non-equilibrium Brownian Dynamics (NEBD) simulations were

used to model colloidal particles of diameter s under shear.

The unit of time is the Brownian relaxation time sB ¼ a2/D0, with

a ¼ s/2 the radius of the colloidal particles and D0 ¼ kBT/x the

bare diffusion constant, kB the Boltzmann constant, T the

temperature and x the Stokes drag coefficient. We define x ¼
6pha as the unit of drag which fixes the viscosity h. For particles

with diameter s ¼ 2.07 mm, the unit of time sB ¼ 11.3 s, the drag

coefficient x ¼ 4.3 � 10�8 N s m�1 and the unit of energy kBT ¼
4.1 � 10�21 J. The simulations were carried out in a simulation

box with periodic boundary conditions in the x and y directions

and two walls positioned at z ¼ 0 and z ¼ h. The number of

particles varied between 1200 and 3456 and the shape of the box

was chosen to be commensurate with the dimensions of the

expected crystalline phases. To approximate hard-sphere-like

particles, an inverse power law was used for the pair-wise inter-

action potential

UijðrÞ ¼ 3
�s
r

�36

; (4)

with 3 the interaction energy, s the particle diameter and r h
|ri � rj| the center-of-mass distance between particles i and j. For

efficiency reasons this potential was truncated at 1.02s and

shifted to make it continuous. The wall–particle interaction is

taken to be
This journal is ª The Royal Society of Chemistry 2012
Uwall ¼

3w

�
s

z

�6

for z\s=2

3w

�
s

h� z

�6

for z . h� s=2

0 otherwise

8>>>>>>><
>>>>>>>:

(5)

with 3w the wall–particle interaction energy and z the z-coordi-

nate of a particle. We used the integration method of Ermak32

with an additional term to account for the oscillating shear

riðtþ dtÞ ¼ riðtÞ þ dt
�VUiðtÞ

x
þ drGi þ dt _gðtÞziðtÞx̂; (6)

with �VUi the force acting on the particle as a result of the

potential energy, dri
G a Gaussian random displacement with zero

mean and variance h(drGia)2i ¼ 2D0dt where a ˛ {x, y, z}. The

term _g(t)zi(t)x̂ imposes a linear velocity profile on the system.

Previous experimental work by Wu et al.33 has shown that

the velocity profile of a partially crystallized (or sliding

layer) suspension deviated from linearity and that the local

shear rate is approximately 1.5 times higher in the layered region

than in the fluid phase. In the simulations we neglect these

deviations from a linear profile because we expect that they do

not strongly effect the shear induced structures. The time step dt

used to evaluate eqn (6) was chosen to be much larger than the

velocity relaxation time (�m/x), but much smaller than the

Brownian relaxation time (a2/D0). It is important to note that

hydrodynamic interactions, which are neglected in Brownian

dynamics simulations, become more important for larger shear

rates and higher volume fractions34 and that they also play an

important role in determining the absolute time scales in the

system.
Structure analysis

The local hexagonal order in a single plane is quantified with the

absolute value of the 2D local bond order parameter j6 given by

��j6ðiÞ
�� ¼

����� 1

ncðiÞ
X
j¼1

ncðiÞei6qðrijÞ
�����; (7)

with nc(i) the number of nearest neighbors of particle i, which is

defined as the number of particles that are within a distance of

1.4s of the particle, rij the vector connecting particles i and j, q(rij)

the angle between rij and some arbitrarily chosen reference axis,

and the i in the exponent the imaginary unit. In a perfect

hexagonal layer, the angles q(rij) are multiples of 60� and |j6(i)|¼
1. To quantify the 2D global hexagonal order we used the global

order parameter J6, given by

J6 ¼
�����
PN

i¼1 j6ðiÞ
N

�����; (8)

with N the number of particles in the plane. For a dense hard-

sphere fluid, this order parameter vanishes in the limit of an

infinitely large system size (limN/NJ6 ¼ 0).

To quantify the symmetry of three dimensional local structure

surrounding a particle, the method of local bond orientational

order parameters was followed.35 Based on the spherical

harmonics Ylm, a set of numbers was computed for each particle
Soft Matter, 2012, 8, 6931–6939 | 6933
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Fig. 3 Shear-induced crystallization with perpendicular alignment,

observed in the velocity–vorticity plane. Values of the global hexagonal

order parameter J6 are indicated in the figures. (A, B) Experimental

results for a sample with volume fraction f ¼ 0.47 � 0.01. Scale bars

are 10 mm. (A) The quiescent sample is fluid in equilibrium. (B) When

subjected to shear with strain amplitude gmax ¼ 0.36 and frequency f ¼
4.5 sB�1, particles form hexagonal layers with one of the close packed

directions almost perpendicular to the velocity direction. (C, D) Simu-

lation results for f ¼ 0.49. The figures show a part of the simulation box

with particles color coded according to their z-position. (D) For gmax ¼
0.35 and f ¼ 4.3 sB�1, the ordering is almost identical to that of the

experiment.
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qlmðiÞ ¼ 1

ncðiÞ
XncðiÞ
j¼1

Ylm

�
r̂ij
�
; (9)

with l an integer parameter and m an integer running from �l

to l. The unit vector r̂ij connects particle i and one of its nearest

neighbors j. To distinguish between particles that are in a liquid-

like environment and particles that are in a crystal-like envi-

ronment we used the method described by Ten Wolde et al.36 A

normalized complex vector ql(i) was constructed with (2l + 1)

components ~qlm(i) that are proportional to the numbers qlm(i).

Next, the correlation between the vector ql(i) and the vector of its

nearest neighbor ql(j) was computed by defining the scalar

product

qlðiÞ$qlðjÞ ¼
Xl

m¼�l

~qlmðiÞ ~qlmðjÞ�: (10)

If the local structures of particle i and j are similar, the value of

the scalar product is close to one and a crystal-like bond was

assigned to the particles. Because thermal broadening results in

a distribution of values, it is necessary to define a threshold value

for the scalar product. As we expect the crystal to have hexagonal

order, we chose a symmetry index l ¼ 6. We used a threshold

value of 0.7 and because some particles in the fluid phase exceed

this threshold, a particle was called crystal-like only if in addition

it had a minimum of 8 crystalline bonds.

The structure factor S(q) was calculated according to

SðqÞ ¼ 1

N

*XN
j¼1

XN
k¼1

eiqðrk�rjÞ
+
; (11)

with N the number of particles in the sample and the angular

brackets denoting an ensemble average. The vector q was chosen

such that qa ¼ 2pn/La with n an integer, a ˛ {x,y,z} and La the

system size. A cosine window was used to avoid artefacts caused

by the shape of the box.

Results

We studied oscillatory shear-induced ordering in fluid samples

with volume fractions in the range f ¼ 0.46–0.49, i.e. just below

the freezing point. First, we describe the different ordered phases

that were observed when the frequency and amplitude of the

oscillatory shear were varied, both in the experiments and in the

simulations. We discuss to what extent these phases agree with

previous work, which was mainly done with light scattering

techniques. Finally, we map out a non-equilibrium phase

diagram.

Twinned fcc

The structural changes that can be observed in the fluids under

shear are rich and strongly dependent on the strain amplitude. In

Fig. 3A a suspension with a volume fraction f ¼ 0.47 � 0.01 is

shown. Without shear, the sample remained in the fluid phase

and for strain amplitudes gmax # 0.1 no shear-induced order was

observed for any frequency. Fig. 3B shows that for a strain

amplitude gmax ¼ 0.36 and frequency f ¼ 4.5 sB�1 (Pe ¼ 0.5) the

particles formed hexagonal layers in the velocity–vorticity plane

with a close packed direction (indicated by the lines of particles
6934 | Soft Matter, 2012, 8, 6931–6939
forming the 2D hexagonal arrangement) almost perpendicular to

the velocity. Fig. 3C shows a snapshot of a simulation with

a volume fraction f ¼ 0.49 and the particles color coded

according to their z-position, so they appear brighter the closer

they are to the plane. After the application of a shear with gmax¼
0.35 and f ¼ 4.3 sB�1 (again Pe ¼ 0.5), almost identical ordering

compared to the experiments was observed (Fig. 3D). The insets

show the increase in the values of the global hexagonal order

parameterJ6. Note that both in the experiments and simulations

a slight deviation of the close packed lines with respect to the

vorticity direction was found. Similar small but systematic

deviations were also found for the crystalline structures described

below.

To determine the stacking of these hexagonal layers, confocal

images of the gradient–velocity plane were taken directly after

cessation of the shear and compared with the simulations. Fig. 4

shows images taken at different moments of the oscillation cycle

for gmax ¼ 0.3 and f ¼ 10.0 sB�1 (experiment) and f ¼ 50.0 sB�1

(simulation) after application of shear for 1200 oscillations. The

higher frequency in the simulation was used for efficiency

reasons. The crystal-like particles in the simulation snapshots are

colored red and the fluid-like particles are colored cyan. Both

types of particles are reduced in diameter (0.5s and 0.2s,

respectively) to enhance visualization. In Fig. 4A the oscillation

is at maximum displacement and the layers are ABC stacked,

indicating an fcc phase. At the equilibrium position of the

oscillation (Fig. 4B), the layers are bridge-site stacked and

a body-centered-tetragonal (bct) phase is temporarily formed. At

the other maximum displacement (Fig. 4C), the particles are
This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 Oscillating fcc phase in the velocity–gradient plane. Experimental

results (left) for f ¼ 0.46 � 0.01, gmax ¼ 0.3 and f ¼ 10.0 sB�1 after 1200

oscillations. The scale bars indicate 12 mm. Simulation results (right) for

f ¼ 0.49, gmax ¼ 0.3 and f ¼ 50.0 sB�1, again after 1200 oscillations.

Crystal particles are colored red and reduced to 0.5s, fluid particles are

colored cyan and reduced to 0.2s to enhance visualization. (A) Particles

are fcc stacked (ABC) at the maximum displacement of the plates. (B)

The hexagonal layers are bridge-site stacked, corresponding to a bct

phase. (C) Particles are twin stacked at the other maximum displacement

of the plates (ACB). (D) Schematic model of the relative movement of the

layers during shear.

Fig. 5 Experimental results on the twinned fcc phase. (A) Rendered

particle positions at both extremes of the oscillation, after applying shear

with gmax ¼ 0.3 and f ¼ 10.0 sB�1 to a suspension with volume fraction

f ¼ 0.47 � 0.01. Red indicates crystal-like particles and cyan indicates

fluid order. The particles are reduced in diameter to enhance visualiza-

tion. (B) The calculated 3D structure factor S(q) at both extremes of the

oscillation in the qx–qy plane demonstrates the twinning behavior.
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again fcc stacked, but with the other twin structure (ACB). The

schematic drawing in Fig. 4D shows that this transition in

stacking can be explained with a simple geometrical model where

the particles oscillate between two neighboring triangular voids,

as proposed originally by Ackerson.3 It is likely that this move-

ment enables the particles to minimize the stress caused by

collisions with other particles during the shear. From both the

experiments and the simulations it is clear that for small strain

amplitudes a twinned fcc-like phase is formed in an initial hard-

sphere fluid. In both experiments and simulations we always

observed the crystal together with a fluid phase. The strain

amplitude that corresponds to the exact dimensions of an fcc

crystal is given by gmax ¼ Dx/Dz ¼ 0.35, with Dx the distance

between two neighboring voids and Dz the distance between two

hexagonal layers. For lower volume fractions, the fcc phase can

persist for significantly larger strain amplitudes because of the

larger free volume. A simple geometrical calculation shows that
This journal is ª The Royal Society of Chemistry 2012
for f ¼ 0.49, the strain amplitude has to be larger than gmax ¼
0.69 before particles in a perfect fcc crystal touch during the

oscillatory motion.

To further demonstrate the twinning behavior, particle coor-

dinates were obtained from experiments with gmax¼ 0.3, f¼ 10.0

sB�1 and f ¼ 0.47 � 0.01. In Fig. 5A the rendered particles are

shown at the two extremes of the oscillation directly after

cessation of the shear. Again, crystal-like particles are shown in

red, fluid like particles are shown in cyan and both are reduced in

diameter to enhance visualization. Fig. 5B shows plots of the

calculated 3D structure factor S(q) in the qx–qy plane, confirming

the twinning behavior. The light scattering experiments by

Ackerson on hard-sphere fluids under oscillatory shear reveal the

same position of the diffraction peaks as in Fig. 5B, although the

maxima are spread out around the inner ring instead of

appearing as small spots.3 This was also observed for soft

spheres8 and for samples above the bulk fluid coexistence

density,10,14 indicating a distribution of crystalline domains

centered at the vorticity direction.
Sliding layers

When the strain amplitude exceeds approximately 0.5, collisions

between particles will prevent the formation of the twinned fcc

phase, and particles form hexagonal layers aligned parallel to the

velocity direction. In Fig. 6, experimental results are shown for

a quiescent sample (Fig. 6A) and after application of shear with

strain amplitude gmax ¼ 0.6 and frequency f¼ 2.5 sB�1 (Pe¼ 0.5,

Fig. 6B) after approximately 100 oscillations. Simulation snap-

shots are shown before (Fig. 6C) and after shear with gmax ¼ 0.8

and f ¼ 3.7 sB�1 (Pe ¼ 1.0, Fig. 6D) after 200 oscillations. The

high values of the global order parameter J6 in Fig. 6B and

Fig. 6D are a clear indication of the hexagonal ordering in the

velocity–vorticity plane.

A comparison between the stacking of hexagonal layers

observed in the experiments and with simulations is shown in

Fig. 7. The experimental results are from a suspension with

volume fraction f¼ 0.47� 0.01, gmax ¼ 1.3 and f¼ 4.1 sB�1. The
Soft Matter, 2012, 8, 6931–6939 | 6935
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Fig. 6 Formation of the sliding layer phase. (A, B) Experimental results

for ordering in a sample with volume fraction f¼ 0.47� 0.01 before and

after application of shear with strain amplitude gmax ¼ 0.6 and frequency

f ¼ 2.5 sB�1. Scale bars are 10 mm. (C, D) Simulation snapshots for f ¼
0.49, gmax ¼ 0.8 and frequency f ¼ 3.7 sB�1. Particles are color coded

according to their z-position. Values of the global hexagonal order

parameter J6 are indicated in the figure.

Fig. 7 Structure of the sliding layer phase. Experimental results for

gmax¼ 1.3, f¼ 4.1sB�1 and f¼ 0.47� 0.01 and simulation for gmax¼ 1.2,

f ¼ 10.0 sB�1 and f ¼ 0.49. Crystal particles are shown in red and fluid

particles in cyan. Both are reduced in diameter to enhance visualization.

(A) After cessation of the shear, random stacked layers were found in the

experiments. (B) Viewed from the vorticity–gradient plane, every third

hexagonal layer is positioned on top of the first in the simulations. The

structure factor S(q), calculated from 3D coordinates, indicates (C)

random stacked layers and (D) sliding layers. (E, F) Proposed movement

of the layers during shear.
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particle coordinates in Fig. 7A were obtained from a 3D stack of

images taken directly after the cessation of the shear and the

structure factor S(q) shown in Fig. 7C is calculated from these 3D

coordinates. The view from the vorticity–gradient plane in

Fig. 7A shows random stacking of the layers, which is confirmed

by the hexagonal pattern in Fig. 7C. The simulation snapshot in

Fig. 7B is for f ¼ 0.49, gmax ¼ 1.2 and f ¼ 10.0 sB�1 and shows

that every third layer is positioned on top of the first, when

viewed from the vorticity–gradient plane. The fourfold pattern of

the corresponding structure factor (Fig. 7D) resembles the

pattern observed by Ackerson with light scattering experi-

ments,3,9 who argued that if the volume fraction f < 0.58, the

hexagonal layers can slide in straight lines through the grooves

formed by a neighboring layer, as indicated in Fig. 7E. The

consequence of this movement is that the registry (in terms of the

close packed stacking points ABC) between the layers vanishes

and the resulting phase is called the freely sliding layer phase.3

Fig. 7F shows that the view of the sliding layer phase in the

vorticity–gradient plane is indeed very similar to what is found in

the simulations (Fig. 7B).

The six-fold pattern in Fig. 7C is expected for higher volume

fractions f > 0.58 when there is still registry between the layers.

From these observations we conclude that in the experiments,

particles rearranged after cessation of the shear into the triangular

voids of neighboring layers during the time it takes to acquire the

confocal images, which resulted in randomly stacked layers.

String phase

For increasing strain amplitude, decreasing Peclet number and

decreasing volume fraction we observed a systematic decrease of
Fig. 8 The string phase. (A) Confocal image with f ¼ 0.46 � 0.01,

gmax ¼ 1.2 and f ¼ 2.5 sB�1 (Pe ¼ 1.0). The scale bar is 15 mm. (B)

Simulation snapshot after application of shear with the same strain

amplitude and frequency as in (A) and with volume fraction f ¼ 0.48.

The values for the global order parameterJ6 are indicated in the figures.

The structure factors S(q) in (C) and (D) are calculated from 2D coor-

dinates obtained from (A) and (B) respectively and indicate the string-like

order in both systems.

This journal is ª The Royal Society of Chemistry 2012
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the global order parameter J6, indicating a deviation from

hexagonal symmetry. This deviation is demonstrated in Fig. 8A

(experiment) and in Fig. 8B (simulation), both after application

of shear with gmax¼ 1.2 and f¼ 2.5 sB�1 (Pe¼ 1.0). The ordering

in Fig. 8A looks hexagonal, but by careful inspection it shows

strings of particles along the velocity direction with regular

spacing within the strings but with little long-range correlation

between the strings, which is confirmed by the fact that the lines

of close packed particles other than those parallel to the velocity

are not straight. This type of ordering is reflected in the values of

the order parameters. Because many particles have six neighbors

more or less hexagonally distributed around them, the average

local order parameter in Fig. 8A is high (h|j6(i)|i ¼ 0.70).

However, because the layer lacks long-range order, the global

order parameter is low (J6 ¼ 0.40) compared to the value for the

sliding layer phase shown in Fig. 6B (J6 ¼ 0.78). A similar but

less pronounced trend was found for the simulation snapshot

shown in Fig. 8B (h|j6(i)|i ¼ 0.66 and J6 ¼ 0.47). Because the

string-like phase in Fig. 8A started to melt back the moment the

shear was stopped, it was impossible to acquire 3D particle

coordinates, again in stark contrast with the sliding layer phase.

Therefore, the structure factors in Fig. 8C (experiment) and

Fig. 8D (simulation) were calculated from 2D coordinates. The

broadening of the intensity maxima along the vorticity direction

is a direct consequence of the string-like ordering of the particles

and corresponds well to the string phase scattered intensity

distribution of Ackerson.3

We found no sharp transition between the sliding layer phase

and the string phase and planes with high values of the global

order parameter (J6T 0.60) and low values were often observed

in the same simulation box. The ordering in the gradient–

vorticity plane strongly resembled the pattern for the sliding

layer phase (Fig. 7B).
Fig. 9 The tilted layer phase. Experimental results for gmax ¼ 0.65, and

f ¼ 0.50 � 0.01, simulation for gmax ¼ 0.9 and f ¼ 0.48. In both cases

Pe ¼ 15. (A) Confocal image during the shear with the inset showing the

particles directly after cessation of the shear. The scale bar is 10 mm. (B)

Simulation snapshot with particles color coded depending on their

z-position. (C) Schematic model. Calculated 3D structure factors S(q) for

(D) experiment and (E) simulation. (F, G) Ordering in the gradient-

velocity plane is similar to fcc(100). (H, I) The gradient-vorticity plane

resembles an fcc(011) plane. (J, K) Schematic model of movement during

the shear.
Tilted layer phase

For both large strain amplitudes and high frequencies (i.e. high

Peclet numbers), a fourth shear-induced 3D structure or phase

was observed that is remarkably different from the others in that

it does not consist of layers of particles parallel to the velocity–

vorticity plane. Fig. 9 shows the experimental measurements

corresponding to gmax ¼ 0.65 and f ¼ 70.0 sB�1 (Pe ¼ 15) after

500 oscillations and simulations with gmax¼ 0.9 and f¼ 50.0 sB�1

(also Pe ¼ 15) after 200 oscillations. In Fig. 9A, particles are

shown in the velocity–vorticity plane during the shear, whilst

Fig. 9B shows a simulation snapshot with particles color coded

according to their z-position. It is clear that the particles are

ordered in lanes that alternate in height, and that these lanes slide

past each other during the shear. To our knowledge, this phase

has not been reported previously in the experimental literature.

Although this phase melts back to a fluid phase in �3 sB, it was
experimentally possible to acquire 3D coordinates and

a comparison of the calculated structure factor S(q) at the

equilibrium position of the oscillation cycle, as is shown in

Fig. 9D and Fig. 9E. The corresponding real-space data are

shown in Fig. 9F–I, where both crystal and fluid-like particles are

reduced in diameter, except in the insets, which show the crystal-

like particles at their original size. The ordering in the gradient–

velocity plane (Fig. 9F–G) resembles the fcc(100) plane, with the
This journal is ª The Royal Society of Chemistry 2012
[011]-direction parallel to the velocity, as schematically depicted

in Fig. 9J. The ordering in the gradient–vorticity plane (Fig. 9H–I)

is similar to the fcc(011) plane, as depicted in Fig. 9K, which
Soft Matter, 2012, 8, 6931–6939 | 6937
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leaves the velocity–vorticity plane with the same symmetry as the

fcc(110) plane (Fig. 9A–B). In a perfect fcc(011) plane, the ratio

of distances a and b in Fig. 9K is a : b ¼ ffiffiffi
2

p
and the red dotted

line indicates the hexagonal fcc(111) plane that is perpendicular

to the page and at an angle of 35� below the horizontal. As can be

seen in Fig. 9H–I the angles of inclination are slightly lower than

this value, close to 30�, which is the value for a perfect hexagonal

ordering of the lanes. From these observations we conclude that

the phase that is formed at the equilibrium position of the

oscillation is a distorted fcc phase with its fcc(111) plane under an

angle and therefore we refer to it as the ‘tilted layer’ phase. This

phase was also observed when the plates were coated with

polydisperse particles (polydispersity d > 20%) so we do not think

that the flatness of the plates is important. It is important to note

that the value of the angle was not constant but depended on the

number of oscillations, Peclet number and in the simulations also

depended on the box size.

In Fig. 9 K, particles can freely slide until c ¼ b ¼ s, corre-

sponding to a volume fraction of f ¼ 0.605. This implies that the

tilted layer phase should also be observable in shear melted hard-

sphere suspensions that are crystalline in equilibrium (f > 0.54).

Based on the strong agreement in structure found in the experi-

ments and simulations, we conclude that hydrodynamic inter-

actions or non-linear flow profiles do not have a strong effect on

the behavior of the particles because the simulation algorithm

neglects hydrodynamics and imposes a linear velocity profile on

the system.
Fig. 10 The out-of-equilibrium phase diagrams showing the dominant

structures induced after 200 oscillations. (A) Experimental results for

samples with volume fraction f ¼ 0.49 � 0.01. The string phases were

observed in samples with volume fractions f ¼ 0.47 � 0.01 and f ¼ 0.46

� 0.01. (B) Simulation results for fixed volume fraction f ¼ 0.48.
Phase diagram

Multiple experiments and computer simulations were performed

for varying strain amplitude and three fixed oscillation

frequencies, resulting in the out-of-equilibrium phase diagrams

in Fig. 10. The markers indicate the phases that were observed

after a fixed number of 200 oscillations. After each experimental

measurement, the sample was shear melted before the start of

a new one by the application of a shear rate _gmax ¼ 60 s�1 and

a strain amplitude gmax ¼ 20. To avoid shear history effects due

to ordering at the walls, the glass slides were either coated with

polydisperse particles or with two disordered layers of mono-

disperse particles. In the experiments (Fig. 10A), the crystal-like

phases were always observed together with a fluid phase. For

both the oscillating fcc and sliding layer phases, domains with

deviating alignments were always present. The transitions

between the crystal-like phases were not sharp and the markers

indicate the predominant phase. The transition between the

twinned fcc and sliding layered phases occurred at gmax z 0.5,

which is similar to the pioneering light scattering experiments by

Ackerson et al.3 and similar to the values found for suspensions

that are crystalline in equilibrium.10,14 The transition strain value

was independent of the applied frequency range. The string

phases were observed in samples with volume fractions f ¼ 0.47

� 0.01 and f¼ 0.46� 0.01, while all other observations are made

at volume fractions of f ¼ 0.49 � 0.01, where strings were not

observed. The phase diagram determined from the simulations

(Fig. 10B) is similar to the experimental phase diagram. The

transition between the twinned fcc phase and the sliding layer

phase occurred at the same strain amplitude (gmax z 0.5), and

was also independent of frequency. For Pe > 5 (upper right
6938 | Soft Matter, 2012, 8, 6931–6939
corner of the phase diagram) tilted layers were systematically

observed in combination with sliding layers or string-like

ordering. The ordering in the simulations did persist for larger

strain amplitudes compared to the experiments. It is highly likely

that the absence of hydrodynamic interactions in the simulations

promotes the consistent layering of the sample even at strain

amplitudes where in the experiments fluid order was found.

Conclusion

With both Brownian Dynamics simulations (without hydrody-

namic interactions and an enforced linear shear profile) and

experiments on PMMA colloids we have investigated and char-

acterized the real-space structure of four oscillatory shear-

induced phases in hard-sphere fluids. The experimentally

observed ordering in the velocity–vorticity plane was in good

agreement with the simulation results, but subtle differences were

found in the three-dimensional order because the particles rear-

range directly after cessation of the shear. Three phases corre-

spond to existing light scattering experiments: an oscillating

twinned fcc phase, a sliding layer phase and a string phase. The

fourth shear-induced phase was not reported previously and

because both experiments and simulations reveal a (distorted) fcc

phase with hexagonal layers that are under an angle with the

horizontal, we call it the tilted layer phase. Previous work by Wu
This journal is ª The Royal Society of Chemistry 2012
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et al.33 showed that the velocity profile of a partially crystallized

(or sliding layer) suspension deviates from linearity, and that the

local shear rate is approximately 1.5 times higher in the layered

region than in the fluid phase. We expect similar effects in the

current system because the crystal phases in this work were

always observed together with a fluid phase. However, because

the structures obtained from simulation (where a linear velocity

profile was imposed on the system) are in strong agreement with

the experiments, we conclude that deviations from a linear profile

can be neglected in this work. Based on the same agreement, we

also conclude that, except for large Peclet numbers, hydrody-

namic interactions do not strongly affect the shear-induced

structures.
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